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Predicting the transition temperature of smectic liquid crystalline 
compounds from their structure using artificial neural networks 
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The derivation of material properties of chemical compounds directly from their chemical structure can 
be used to plan chemical syntheses more efficiently. Here, feed forward-back propagation neural 
networks are devised to predict the transition temperatures of smectic liquid crystalline compounds 
based on a set of data that contains 6304 different structural patterns. The trained networks were tested 
with 1575 smectic liquid crystalline compounds that the networks had not seen before. Four different 
network architectures were trained to predict the transition temperatures. All networks had the 
capability to predict a significant portion of the transition temperatures with small deviations. The 
network with 10 hidden neurons and one output neuron has a high recognition rate and predicts the 
transition temperatures of about 85% of the structures unknown to the network with an error of 
d 20 "C. In contrast, the network with 100 hidden neurons and 370 output neurons makes more precise 
predictions of the transition temperatures indicated by a low standard deviation of 14.3 OC and by the 
fact that only 8.3% of the tested structures produced an error of more than 20 "C. However, the latter 
network gives answers only for 79.4% of the structures in the test set. 

Introduction 
There are two main approaches to predicting unknown data 
from a set of known data. First, classical statistical methods 
(extrapolation, etc.) can be used and, second, artificial intelli- 
gence (neural networks, etc.) can be employed to predict the un- 
known data. Neural networks have been used to solve a great 
variety of chemical tasks,' such as recognition of NMR 2-4 

and mass ~ p e c t r a , ~  computation of electrostatic charges on a 
molecular surface,6 and deriving material properties directly 
from their chemical s t r ~ c t u r e s . ~ ~ ~  Gakh et al. used neural 
networks to predict material properties using six thermody- 
namic parameters from alkanes ranging from 6 to 10 C-atoms 
based on a graph theoretical approach to encode the structures. 
Using descriptors accessible through molecular modelling of 
each compound a neural network was shown to predict boiling 
points and critical temperatures.* Here we show that neural 
networks can be used to predict the transition temperatures of 
liquid crystalline compounds that form a smectic A phase 
directly from their chemical structure. 

Neural networks are well suited to predict non-linearly 
dependent relationships between input and output data. 
Because there is no linear relationship between chemical 
structures and their associated transition temperatures a feed 
forward-back propagation neural network was chosen for this 
kind of task.' Such a network consists of several neurons that 
are grouped into usually three hierarchical layers (Fig. 1). The 
first layer is the input layer on which the information is 
presented to the network, i.e. in our case the chemical structure, 
the second is the hidden layer that is used for computing results 
from the information in the first layer, reformulating it and 
passing it on to the third layer. The third layer is the output 
layer that represents these results, i.e. the transition temper- 
ature. Each neuron of a given layer is connected with each 
neuron of the hierarchically higher and lower layers but never 
with neurons within its own layer. Also, no direct connec- 
tion between the input and the output layer is encoded. The 
information presented to the input layer is passed along the 
connections, i.e. the weights, to the hidden layer and then 
further to the output layer. This type of neural network can be 
trained by comparing the computed results with the target 
results and adjusting all connections accordingly. Due to this 

Fig. 1 The top layer is the input layer each neuron of which is 
connected to each neuron of the middle, the hidden, layer. Each neuron 
of that layer is connected to each of the bottom, the output, layer. The 
connections between the neurons, i.e. the weights, contain the 
information of a trained neural network. Each neuron of the hidden 
and output layer is a simple processing unit that sums up its input and 
processes this sum through a sigmoid function to produce an output. 

adjustment the network will be able to recognize the 
information better the next time it is presented to the input 
layer. This procedure must be repeated for each pattern of the 
set used to train the network. One presentation of all patterns of 
the training set to the network is called a training cycle. 

Methods 
Before the network can start to learn, a way must be found to 
encode the chemical structure into the input layer. The 
representation of a chemical structure has to be mapped onto 
the linear array of input neurons. An encoding of a chemical 
structure must have two properties: first the encoding must be 
translationally invariant and, second, it has to be unambiguous 
in two ways: two structures must not have the same 
representation and each structure must have only one 
representation. Therefore, we encoded the chemical structures 
in the following way: each structure is composed of nine 
fragments (see Fig. 2). Each fragment has a fixed number of 
possible substructures and is represented by a corresponding 
number of input neurons (see Table 1). So, if a fragment is 
present, the neuron corresponding to this substructure in the 
given fragment is turned 'on' (= 1) while all other neurons 
corresponding to this fragment are set to 'off' (= 0). The 
combination of the encoding of all fragments present in the 
chemical structure results in a binary pattern that represents the 
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Table 2 Architecture and training parameters for all networks 

... 0000000001 00000000000o0O0000 

I 
T' 

c c  1 1 1  
L '  R'  B' R3 T2 

Fig. 2 Panel (a) shows an example of a smectic liquid crystalline 
compound. The compound is composed of nine fragments (T', L' etc.). 
In this structure each fragment is occupied by a substructure. The 
structure encoding is exemplified by the fragment T2. The decyl residue 
in the T2 fragment is the tenth out of 28 possible substructures 
occurring at this position in the molecule. The rightmost 28 neurons of 
the input layer encode this part, i.e. T2, of the molecule. 27 of these 
neurons hold a value of 0 except for the tenth neuron that is set to 1. 
Panel (b) shows an example for a structure that does not contain all 
fragments; the fragments R2, B2 and L2 are not used and, therefore, the 
corresponding input neurons are set to 0. 

Table 1 Division of the molecules into nine fragments. If a fragment is 
occupied by a substructure the neuron corresponding to this 
substructure in this fragment will be set to 'on', while all other neurons 
representing this fragment are 'off'. If a fragment is not present in a 
given molecule all neurons of the input layer corresponding to this 
fragment will be 'off. The description of the fragments is depicted in 
Fig. 2 

Long fragment Fragment Number of substructures 
name abbreviation represented in data set 

First terminal 
First linking 
First ring 
First bridge 
Second ring 
Second bridge 
Third ring 
Second linking 
Second terminal 

T' 
L' 
R' 
B' 
R2 
B2 
R3 
L2 
T2 

28 
6 

33 
19 
33 
19 
33 
6 

28 

Number of different fragments used in the training and testing set of 
the neural networks. 

chemical structure as series of 0 and 1 values to the input layer 
of the neural network. One advantage of this encoding is its 
simple implementation. However, as a drawback, this way of 
encoding chemical structures is different for each class of 
compounds. If the molecules have no generic direction of 
presentation, e.g. no head or tail groups, the chemical structures 
have to be presented to the network in two orientations, i.e. 
from left to right and vice versa. The representation of the 
structures of smectic liquid crystalline compounds chosen here 
does not encompass all possible smectic liquid crystalline 
structures. However, more than 10 l1  different structures can 
be entered into the network using this encoding. 

Theoretically, one can think of another possible way of 
encoding chemical structures by mapping each fragment to one 
neuron which can take a value between 0 (fragment is absent) 
up to the number of possible substructures for this fragment. In 
this encoding similarity of the code numbers would imply 
similarity of the chemical substructures. An attempt to train a 

Computation time 
t/min Number of neurons in the 

layer 
No. of Per 1000 

Name Input Hidden Output cyclesb cycles' Totald 

N10/1 205 10 1 70000 13 900 

N100/1 205 100 1 70000 92 6 440 
N100/370 205 100 370 20000 310 6 200 

N10/370 205 10 370 26250 93 1 949 

Obviously, the greater the number of neurons in the hidden and the 
output layer the less cycles can be computed per minute. The times were 
recorded on a Fujitsu UXP/M (S100) and are equivalent to up to 
8.6 x lo6 weight updates per second. The number of connections varies 
between 2060 (network N10/1) and 57 500 (network N100/370). 

Number of cycles used to train each network. Training time per 1000 
cycles. Total training time. 

neural network with this encoding did not lead to conver- 
gence. 

We have developed two different ways to map the 
temperature range to the output neurons. The temperature 
range in our training set ranged from the minimum transition 
temperature, Tmi, = 46"C, to the maximum transition 
temperature, T,,, = 396°C. In the first approach, the 
temperature range was mapped to the interval from 0 to 1, i.e. 
the output range of one neuron. The value x of the output 
neuron is obtained from the corresponding temperature T as 
shown in eqn. (1). In this case only one output neuron is needed 

and results in an analogue representation of the temperature. In 
the second approach, we used (T,,, - Tmi,) + 1 neurons on 
the output layer such that the temperature is displayed like a 
digital thermometer. If the transition temperature is T, the first 
(T - Tmi,) neurons are set to a value of '0.9' (the on-state) while 
the rest is set to a value of '0.1' (the off-state). 

Finally, the number of neurons in the hidden layer had to be 
set. We tested two different numbers of hidden neurons of 10 
and 100 each with the respective number of output neurons. 
This led to a total of four networks that were trained (see Table 
2). We had a data set of 7879 different structural patterns 
generated from the chemical structures,",' for which a smectic 
A phase exists, and their associated transition temperatures. 
This set was divided randomly in a ratio of 4 : 1 into two subsets, 
the training set containing 6304 patterns and their transition 
temperatures and the test set with 1575 patterns with their 
associated transition temperatures. The learning rate, which 
determines the speed and accuracy of learning, was initially set 
to 2.0 and subsequently decremented to 0.01 to reach a stable 
state of the network (cJ Fig. 3). The momentum, which specifies 
to what extent the previous search direction is retained in the 
current search direction, remained constant at 0.5. 

After training was completed, each network was tested with 
the patterns of the test set unknown to the network. For 
networks N10/1 and N100/1 with just one neuron on the output 
layer the transition temperature is obtained from the value of 
the output neuron as shown in eqn. (2), where x is the value of 

the output neuron. If multiple output neurons are used as in 
networks N10/370 and N100/370 the neurons should ideally 
result in a step function (Fig. 4). Because of the large number of 
patterns in the test set an algorithm was devised to compute 
automatically the transition temperature from the values of the 
neurons on the output layer. The automatic interpretation of 
the output in networks with more than one output neuron was 
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Fig. 3 Progress of the training of network N10/1 as measured by the 
RMS obtained from the patterns of the training set. The periodic steps 
in the curve originate from the decrease of the learning rate at these 
points. After each step the RMS remains nearly constant. When the 
learning rate gets too low, no further significant improvements were 
observed and the training was terminated. 

done in two steps: first when the sequence of the output neurons 
from left to right is interpreted as a trajectory, all transitions 
over the values of 0.7, 0.6, 0.5, 0.4 and 0.3 were counted. If 
exactly one transition over each threshold exists, the transition 
temperature was obtained counting from the left those output 
neurons that have a value of greater than 0.5. For these patterns 
the standard deviation of the predicted from the actual transition 
temperature was calculated. Second, all patterns which had more 
than one transition over any of the values of 0.7,0.6,0.5,0.4 and 
0.3 were tested if the difference between x values of the first 
transition over 0.7 and the last over 0.3 was less than twice the 
standard deviation obtained in the first step. In this case the 
average of the two temperatures at the first crossing over 0.7 and 
the last crossing over 0.3 was taken as the transition temperature. 

Results 
We used two different ways to measure the quality of prediction 
of the networks. First, we grouped the differences between 
predicted and experimental transition temperatures in several 
intervals, e.g. of less than 5 "C, and counted the number of 
structures that were predicted within these boundaries (Table 
3). Secondly, we computed the RMS (root mean square) of the 
difference between the predicted and measured transition 
temperatures. Fig. 5 shows an example of both quality tests that 
were obtained during the training procedure by testing the 
status of the networks with an independent test set after 
intervals of 200 training cycles each. In contrast, Fig. 3 shows 
the decline of the RMS of the training set itself during the 
training phase. By comparing Figs. 3 and 5 it is obvious that the 
RMS of the training set is not a good indicator of the quality of 
the network because the testing with data unknown to the 
network improves significantly after the RMS of the training 
set has converged. On the other hand, the RMS curve using 
the training set is a good indicator of the quality of the 
representation of the training set in the neural network. If there 
are only small changes of the RMS of the training patterns the 
learning rate can be reduced to improve the speed of the 
reduction of the RMS value, i.e. the steps in the curve in Fig. 3. 

Fig. 6 shows the distribution of the errors of the test set for 
two networks at the end of the training. The networks predicted 
the transition temperatures of z 40% of the unknown structures 
with absolute errors of 6 5 "C and of 71% to 85% with absolute 
errors of <20 "C (cf: Table 3). It is not possible to make an 
overall decision on which network has the best prediction 
capabilities. Network N100/370 provides the best results if an 
exact prediction of the transition temperatures is desired: the 
transition temperature of 42.4% of the pattern unknown to it 
were predicted with an error of less than k 5 "C. If one takes as 

0 100 200 300 400 
neurons , (6) 

I 1  . . . . . . .  

0.8 i 

0 100 200 300 400 
neurons 

l ' " ' ' ' * I  
1 (c) 

0.8 

0.4 

0 loo 200 300 400 
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Fig. 4 The three panels show the response of the trained network 
N10/370 using patterns of the test data set. The dashed line in each 
panel indicates the expected curve (step function) and the solid line 
represents the curve obtained from the neural network. The panel at the 
top (a) shows a very good agreement between the calculated curve and 
the expected value with only one transition (step) in the network's 
response. This type of curve is obtained for 96.1% of the test patterns. 
The second panel (b) shows a curve with multiple transitions within a 
narrow range. The transitions are separated by less than twice the 
standard deviation obtained from network responses similar to that 
shown in the top panel. This type of curve is found for 2.9% of the 
network's responses. The curve in the last panel (c )  shows multiple 
transitions that are far apart and is representative of 1% of the 
network's responses. This type of response is not interpreted even 
though one of the transitions is almost correct. 

a reference for 100% not all structures presented to the network 
during testing but only those that were recognized, i.e. 79.4% of 
the total, the value of 42.4% improves to 53%. Thus, more than 
half of the predicted transition temperatures have an error of 
less than & 5 "C. Furthermore, the same network has relatively 
few prediction errors of greater than 20 "C, i.e. 8.3%, while for 
other networks this value is found between 15% and 23%. If a 
network is desired that has a very high prediction rate network 
N10/1 should be used. 

The reasons for deviations of the predicted from the actual 
temperatures may be twofold. First, there will most likely be 
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Table 3 Results of the networks with the test set of 1575 patterns encoding chemical structures that the neural network had not seen before. It is 
obvious that the best recognition rate with an error of < k 100 "C is obtained by network N10/1. The best quality of prediction is obtained for 
network N100/370 as evidenced by the fraction of predictions with an error of more than 20 "C and the RMS value 

N10/1 100 18.8 41.3 63.1 76.5 84.7 96.9 99.8 15.3 
N10/370 99.0 19.0 38.2 59.0 71.4 79.5 95.8 99.0 19.5 
N100/1 100 28.6 42.9 61.5 71.5 76.6 91.7 98.4 23.4 
N100/370 79.4 14.3 42.4 58.4 65.7 71.1 78.5 79.3 8.3 

a Overall recognition rate. RMS value of all recognized patterns. Fraction of the patterns of the test set that have an error of less than or equal to 
the value specified. Fraction of the patterns whose transition temperature was predicted with an error of greater than 20 "C. 

'is0 -40 -30 -20 -10 0 10 20 30 40 50 
Error/OC 

"0 loo00 
cycles 

Error/OC 

0 loo00 2 m  
cycles 

Fig. 5 Progress of the training of network N100/370 obtained by 
testing the network with the independent test set. The curves in 
panel (a)  depict the fractions of the test patterns with errors of less 
than or equal to 5, 10, 15, 20, 30, 40, 50 and 100 "C (bottom to top), 
respectively, as a function of the training cycle. Panel (6) 
shows the development of the RMS of the test patterns during the 
training of the network. It shows that the RMS is mainly an indicator 
of the number of large errors in the prediction because it drops to 
lower values when the curves of panel (a)  have already converged 
to seemingly constant values. 

some errors in the database as well as in the underlying 
literature and, secondly, the neural net may not have had an 
adequate number of molecules in the training set to represent 
the breadth of liquid crystals that form a smectic A phase. 

We have shown that it is possible to predict the clearing 
temperature of nematic liquid crystalline compounds using 
neural networks. For this task classical methods can also be 
used. However, these classical methods usually work only 
within a series of homologous compounds and cannot be used 
in general to predict the properties of a wide variety of chemical 
structures. In contrast to the prediction of clearing temper- 
atures of nematic liquid crystalline compounds it is more 
difficult to predict the transition temperatures of compounds 
that form a smectic A phase because the formation of the latter 
phase requires that intermolecular forces are recognized by the 
algorithm, i.e. smectic phases occur only if the core groups and 

Fig. 6 Error distributions of the test set patterns for networks NlOjl 
and N100/370. A comparison of the two curves indicates that the 
distribution in panel (b) is more narrow at low values and has fewer 
large errors than that shown in panel (a). The references for the percent 
values are in both cases the whole test set. If only the recognized 
patterns were used as a reference the percent values in panel (6) would 
increase by 26% relative (cf. Table 3). 

the tail groups have a significantly higher adhesion to each 
other than that between the core and the tail groups. 

Further advantages of neural networks compared with 
classical methods lie in their ability to generalize from learned 
data, in the speed of predicting new information (about 50 000 
per hour on a 486 PC) and in that they do not rely on the 
knowledge of explicit rules. Preliminary tests of classical 
regression analysis to predict transition temperatures show 
that a prediction of the quality shown here can be obtained 
when only one fragment is varied. That is, predictions within 
homologous series are possible, but when more than one group 
is changed at a time the prediction usually has much larger 
margins of error than the neural network based prediction. The 
development of a structural encoding that could potentially be 
used to encode more than a single class of molecules to one 
neural network is under way. 
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